SYLLABUS: M.Tech. REMOTE SENSING MO-2018

DEPARTMENT OF REMOTE SENSING, BIRLA INSTITUTE TECHNOLOGY, MESRA, RANCHI 835215

COURSE INFORMATION SHEET

Course code: RS 501
Course title: PRINCIPLES OF REMOTE SENSING & DIGITAL SATELLITE IMAGE PROCESSING

Pre-requisite(s): Basic Physics/Science
Co- requisite(s): Computer Knowledge

Credits: 3 L: 3 T: 0 P: 0

Class schedule per week: 03
Class: M. TECH
Semester / Level: 01/05 (Monsoon)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives

This course aims to:

1. Disseminate basic concepts and applications of Electromagnetic Spectrum in Remote Sensing, Energy Balance and Data acquisition platforms, sensors and their characteristics
2. Enhance student’s knowledge about optical, thermal and microwaves based Remote Sensing and Applications for solving real life problems
3. Introduce students to digital image processing tools and techniques.

Course Outcomes (CO):

On completion of this course, students should be able to:

CO1	Explain physical principles and sensing process in remote sensing.
CO2	Explain different type of sensors (optical, microwave, thermal and LIDAR) and their characteristics.
CO3	Describe preprocessing requirements and discuss various Digital Image Processing techniques.
CO4	Rationalise statistical outlook of satellite images and different classification approaches with respect to diverse applications.
CO5	Apply the knowledge of remote sensing in various thematic studies

SYLLABUS

MODULE 1: BASIC CONCEPTS

MODULE 2: DATA ACQUISITION

MODULE 3: OPTICAL, THERMAL AND MICROWAVE REMOTE SENSING
Imaging and Non-Imaging, Active and Passive, Multispectral, Superspectral and Hyperspectral Sensors, Electro-Optical Systems, Opto-Mechanical Scanners, Infrared Scanners, Scatterometer,

MODULE 4: IMAGE ENHANCEMENT AND FILTERING TECHNIQUES (8L)
Concepts about digital image and its characteristics, Sources of image degradation - Image restoration and Noise Abatement , Radiometric and Geometric correction technique, linear and non linear transformation for geometric corrections, Look-up Tables (LUT) and Types of image displays and FCC, Radiometric enhancement techniques, Spatial enhancement techniques, Contrast stretching: Linear and non-linear methods, Low Pass Filtering: Image smoothing, High Pass Filtering: Edge enhancement and Edge detection, Gradient filters, Directional and non-directional filtering.

MODULE 5: PATTERN RECOGNITION (8L)
Concept of Pattern Recognition, Multi-spectral pattern recognition, Spectral discrimination, Signature bank, Parametric and Non-Parametric classifiers, Unsupervised classification methods, Supervised classification techniques, Limitations of standard classifiers.

TEXT BOOKS:

REFERENCE BOOKS:

Course Evaluation:
Individual assignment, Quizes, Mid and End semester examinations

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD1</th>
<th>Lecture by use of boards/LCD projectors/OHP projectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD2</td>
<td>Assignments/Seminars</td>
</tr>
<tr>
<td>CD3</td>
<td>Laboratory experiments/teaching aids</td>
</tr>
<tr>
<td>CD4</td>
<td>Industrial/guest lectures</td>
</tr>
<tr>
<td>CD5</td>
<td>Industrial visits/institutional visits/field visit</td>
</tr>
<tr>
<td>CD6</td>
<td>Self- learning such as use of NPTEL materials and internets</td>
</tr>
</tbody>
</table>
Course Objectives:

This course aims to:

1. Introduce the students to the basic concepts of GIS and making the students familiar with the spatial data and spatial analysis techniques.
2. Introduce the satellite based positioning system, concept of geodesy and augmentation systems.
3. Impart concepts about reference surfaces (Datum), coordinate transformation models and surveying methods.

Course Outcomes (CO):

On completion of this course, students should be able to:

CO1	Describe various GIS and Navigation tools and techniques within spatial analytical framework and handle spatial and non-spatial database.
CO2	Carry out spatial data analysis to solve natural, environmental and societal problems and challenges.
CO3	Explain various datums, coordinate systems, Differential positioning concepts and associated surveying techniques.
CO4	Elucidate integrated geospatial techniques and apply them in solving real world problems.
SYLLABUS

MODULE 1: BASIC CONCEPTS OF GIS (8L)
Definition, Philosophy & Historical evolution of GIS, Spatial vs. non-spatial data, Components of GIS, Spatial data models – Raster and Vector; advantages & disadvantages, Raster Data & its Representation: Data Structure& File format, Data Compression (block code, chain code, run length code, quadtree, MrSID), Vector data representation: Data Structure& File format, Topology, Advantage of DBMS in Context of GIS, Relational and Object Oriented DBMS.

MODULE 2: DATA INPUT AND GEO-CORRECTION (8L)
Sources of Spatial Data (Raster and Vector), Data Acquisition Through Scanners and on-screen Digitisation, Projections, Geometric Transformations of Raster and Vector Data (Affine Transformation and Transformation Coefficients), RMS Error, Types of Co-ordinate Systems, Spheroid and Datums, Sources of Errors, Spatial Data Quality: Accuracy, Precision, Error and uncertainty.

MODULE 3: SPATIAL ANALYSIS AND VISUALIZATION (8L)
Spatial Analysis: Definition, Steps and classification, Raster Data Analysis Tools – Local, Focal, Zonal and Global, Vector Data Analysis – Buffering, Distance Measurements, Analyzing Geographic Relationship, Overlay Analysis, Quantifying Change, Spatial Interpolation: Introduction, DEM Generation Surface Representation & Analysis, Network Analysis, Linkage Between Spatial and Non-Spatial Data, Basics of Geodatabase Model, Difference between 2D, 2.5D, 3D and 4D GIS, Current issues and trends in GIS.

MODULE 4: SATELLITE POSITIONING SYSTEM - AN OVERVIEW (8L)

MODULE 5: POSITIONING AUGMENTATION AND GNSS APPLICATIONS (8L)
Differential positioning concept, Various Differential survey Methods, GNSS Survey Planning, Data Processing, Site characteristics of Reference Station, Reference Station Equipment, Augmentation Systems (IRNSS, GAGAN, WAAS, LAAS, etc.) Basic concepts, Applications.

TEXT BOOKS:
REFERENCE BOOKS:

Course Evaluation:
Individual assignment, Quizes, Mid and End semester examinations

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD1</th>
<th>CD2</th>
<th>CD3</th>
<th>CD4</th>
<th>CD5</th>
<th>CD6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture by use of boards/LCD projectors/OHP projectors</td>
<td>Assignments/Seminars</td>
<td>Laboratory experiments/teaching aids</td>
<td>Industrial/guest lectures</td>
<td>Industrial visits/institutional visits/field visit</td>
<td>Self- learning such as use of NPTEL materials and internets</td>
</tr>
</tbody>
</table>

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Course Delivery Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>CD1, CD2, CD4, CD6</td>
</tr>
<tr>
<td>CO2</td>
<td>CD1, CD2, CD3, CD6</td>
</tr>
<tr>
<td>CO3</td>
<td>CD1, CD2, CD3, CD6</td>
</tr>
<tr>
<td>CO4</td>
<td>CD1, CD2, CD3, CD4, CD6</td>
</tr>
</tbody>
</table>
SEMESTER II

Course code: RS 511
Course title: AERIAL AND SATELLITE PHOTOGRAMMETRY & IMAGE INTERPRETATION

Pre-requisite(s): Student must have the knowledge of Remote Sensing, GIS & GNSS
Co- requisite(s): Basic understanding of various satellite data

Credits: 3 L: 3 T: 0 P: 0
Class schedule per week: 03
Class: M. TECH
Semester / Level: 02/05 (Spring)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives
This course aims to make the students:

1. Learn fundamental aspects of Aerial Photogrammetry, Satellite/Aerial Photo interpretation and its applications in various thematic domains.
2. Learn analogue and digital based approaches in photogrammetry.
3. Understand the recent developments and role of satellite and UAV in terrain modelling and mapping.

Course Outcomes (COs)
On completion of this course, students should be able to:

CO1	Explain the historic developments in the field of Photogrammetry, and image interpretation concepts.
CO2	Carry out planimetric measurements and principles with reference to Aerial and Satellite High Resolution Images.
CO3	Use Stereoscopes, anaglyph glasses and digital workstations for Photogrammetric purposes.
CO4	Explain the limitations and flight planning requirements for various natural resources and thematic mapping/management.
CO5	Explain the role of UAV in terrain mapping and apply photogrammetric principles.

SYLLABUS

MODULE 1: ENVIRONMENTAL MAPPING & INTERPRETATION (8L)
Importance of Image Interpretation, Image interpretation for delineation of lithology (Rocks), minerals and their characteristics, Geological structures - Folds, Faults and Joints and their field characteristics, Various important land forms, Image characteristics of geological structures and major land forms, Visual and Digital Satellite Image Interpretation, Elements of image interpretation, development of interpretation keys, Image interpretation for LU/LC and Vegetation mapping, Image interpretation for ocean and coastal monitoring.

MODULE 2: GEOMETRY OF AERIAL PHOTOGRAPHS (8L)
Need for Photogrammetry, Historical developments in Photogrammetry, Fundamental concepts and Importance of flight planning, End Lap, Side Lap, Scale, Ground Coverage, Weather Conditions, Purpose, Flying Height, Projection, Tilt, Swing, Scale, Image Displacement due to relief, due to lens distortion, due to tilt, Parallax, stereoscopic depth perception, overlaps in stereo pairs, principles of floating marks, Parallax bar and types, measurement of absolute and differential parallax, Parallax
MODULE 3: ANALYTICAL PHOTOGRAMMETRY (8L)
Co-ordinate system, air base components, degree of freedom, Elements of interior and exterior orientation of an aerial photographs, Numerical Derivations for Height based on relief displacement, coordinates, parallax, Orientation Procedures, Coordinate Transformation concepts, Epi-polar Geometry, Photo-triangulation: Pass-points for Aerotriangulation, semi-analytical aero-triangulation, analytical aero-triangulation, bundle adjustment with GNSS, Aero-triangulation with Satellite images, strategies for aero-triangulation.

MODULE 4: DIGITAL PHOTOGRAMMETRY (8L)
Analogue to Digital conversion, Image measurements, colour balancing, Image matching, Feature extraction- points, lines and regions, Planimetric Measurements, GCPs and Ortho-Rectification, Ortho-photographs, Digital Terrain Model derivation from Satellite images, Limitations, Quality checks and interactive control.

MODULE 5: TERRAIN MODELING WITH UAV (8L)
Digital Photogrammetric Images from UAV and associated concepts, UAV flight planning, coverage types, processing methods., Recent trends in its application, automated aerial triangulation: concepts, solutions, analysis, Photogrammetry work-stations, Review of available software.

TEXT BOOKS:

REFERENCE BOOKS:

Course Evaluation:
Individual assignment, Quizes, Mid and End semester examinations

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD1</th>
<th>Lecture by use of boards/LCD projectors/OHP projectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD2</td>
<td>Assignments/Seminars</td>
</tr>
<tr>
<td>CD3</td>
<td>Laboratory experiments/teaching aids</td>
</tr>
<tr>
<td>CD4</td>
<td>Industrial/guest lectures</td>
</tr>
<tr>
<td>CD5</td>
<td>Industrial visits/institutional visits/field visit</td>
</tr>
<tr>
<td>CD6</td>
<td>Self- learning such as use of NPTEL materials and internets</td>
</tr>
</tbody>
</table>
MATURING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3

MATURING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Course Delivery Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>CD1, CD3, CD6</td>
</tr>
<tr>
<td>CO2</td>
<td>CD1, CD2, CD3, CD6</td>
</tr>
<tr>
<td>CO3</td>
<td>CD1, CD3, CD6</td>
</tr>
<tr>
<td>CO4</td>
<td>CD1, CD2, CD3, CD6</td>
</tr>
<tr>
<td>CO5</td>
<td>CD1, CD2, CD3, CD4, CD6</td>
</tr>
</tbody>
</table>

Course code: RS 512
Course title: ADVANCED REMOTE SENSING AND GEOSPATIAL MODELLING
Pre-requisite(s): (i) Basic knowledge of Remote Sensing, GIS, and GNSS
(ii) Student must have undergone RS 501 and RS 502
Credtis: 4 L:3 T:1 P:0
Class schedule per week: 4
Class: M. TECH
Semester / Level: 02/05 (Spring)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives
This course aims to make the students:

1. Understand Thermal, Microwave and Hyperspectral Remote Sensing techniques and its application areas.
2. Learn advanced pattern and process modelling techniques associated with spatial problems.
3. Realize the importance of uncertainty and errors associated with various spatial processes, and to quantify those errors.
4. Learn techniques of Time Series Analysis and Web GIS.

Course Outcomes (COs)
On completion of this course, students should be able to:

<p>| CO1 | Describe various advanced RS & GIS tools and techniques within spatial analytical framework to solve natural, environmental and societal problems and challenges. |</p>
<table>
<thead>
<tr>
<th>CO2</th>
<th>Relate backscattering signals from different surfaces to physical processes, and understand SAR processing techniques.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO3</td>
<td>Make use of thermal and hyperspectral data for real world applications (analysing Urban Heat Island problem, estimation of surface composition, forest species identification etc.).</td>
</tr>
<tr>
<td>CO4</td>
<td>Utilise sampling concepts, point pattern analysis, time-series analysis for various real life problems and associated uncertainty and errors.</td>
</tr>
<tr>
<td>CO5</td>
<td>Explain WebGIS concepts and able to use various scripting languages, web tools in implementing GIS functions on web.</td>
</tr>
</tbody>
</table>

SYLLABUS

MODULE 1: Advances in Thermal and Microwave Remote sensing

Determination of Emissivity and Land surface Temperature (LST) using thermal band, Microwave sensor technology, platforms and data types, Basic and advanced processing techniques such as InSAR, differential InSAR or polarimetric InSAR, Applications of active and passive microwave remote sensing data in areas of geology, Hydrology, Agriculture and environmental sciences, etc., Application of LST in analysing Urban Heat Island effect, Coalfire extent, Energy balance, etc.

MODULE 2: Hyperspectral and LASER Remote sensing

Basic principle of hyperspectral image creation and spectral radiometry concepts, Processing and information extraction techniques in hyperspectral images, Spectral mixture analysis, feature extraction, classification and spectral library creation, Applications of hyperspectral remote sensing, Physics of Lidar and its application.

MODULE 3: Spatial Patterns, Processes and Uncertainty Modelling

Kriging and Spatial Autocorrelation, Points and Pattern Analysis: Nearest Neighbour Analysis, Quadrat Analysis, Poisson Processes, Uncertainty, Spatial resolution induced error, Positional Uncertainty, Attributed Uncertainty, Error Propagation Analysis, Taylor Series Approximation.

MODULE 4: Geo-spatial Modelling and TimeSeries Analysis

MODULE 5: Web GIS

Roles of Clients & Servers, Basics of web GIS, Architecture, Datawarehouse and geospatial web services, OGC, Open source and proprietary web-based scripting and mapping environments, KML, GeoJSON, and other formats for drawing vector data in the browser, Application Programming Interfaces (APIs),GeoServer, NSDI, Census GIS, BHUVAN, Crowd Sourcing.

TEXT BOOKS:

REFERENCE MATERIALS:

1. ArcGIS Resource Center Web APIs, http://resources.arcgis.com/content/web/web-apis
11. ArcGIS Resource Center Web APIs, http://resources.arcgis.com/content/web/web-apis

Course Evaluation:
Individual assignment, Quizes, Mid and End semester examinations

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD1</th>
<th>Lecture by use of boards/LCD projectors/OHP projectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD2</td>
<td>Assignments/Seminars</td>
</tr>
<tr>
<td>CD3</td>
<td>Laboratory experiments/teaching aids</td>
</tr>
<tr>
<td>CD4</td>
<td>Industrial/guest lectures</td>
</tr>
<tr>
<td>CD5</td>
<td>Industrial visits/institutional visits/field visit</td>
</tr>
<tr>
<td>CD6</td>
<td>Self- learning such as use of NPTEL materials and internets</td>
</tr>
</tbody>
</table>

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3
MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Course Delivery Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>CD1, CD2, CD3, CD6</td>
</tr>
<tr>
<td>CO2</td>
<td>CD1, CD2, CD3, CD4, CD6</td>
</tr>
<tr>
<td>CO3</td>
<td>CD1, CD2, CD3, CD4, CD6</td>
</tr>
<tr>
<td>CO4</td>
<td>CD1, CD2, CD3, CD4, CD6</td>
</tr>
<tr>
<td>CO5</td>
<td>CD1, CD2, CD3, CD6</td>
</tr>
</tbody>
</table>

ELECTIVES

Course code: RS 505
Course title: REMOTE SENSING IN AGRICULTURE AND FORESTRY

Pre-requisite(s): (i) Knowledge of Basic Sciences
(ii) Computer Knowledge

Co-requisite(s):

Credits: 3 L:3 T:0 P:0
Class schedule per week: 3
Class: M. TECH
Semester / Level: 01/05 (Monsoon)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives

This course aims to:

1. Enhance the student’s understanding about role of remote sensing for agriculture and forestry applications.
2. Make the student assess various situations of agriculture damages and land degradation, and to detect and quantify those problems using remote sensing.
3. Learn various forestry, ecological and wildlife related concepts, and to use remote sensing in those fields.

Course Outcomes (CO)

On completion of this course, students should be able to:

<table>
<thead>
<tr>
<th>CO1</th>
<th>Map and quantify various agricultural features, yield, and identify the difference between healthy crop and affected crop using remote sensing data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Identify and visually interpret various land features and its degradation on the satellite imagery and importance of secondary data in the field of agriculture.</td>
</tr>
<tr>
<td>CO3</td>
<td>Able to identify different types of forests features and associated problems (such as forest fire, degradation, deforestation etc) with the help of satellite data.</td>
</tr>
<tr>
<td>CO4</td>
<td>Able to model landscape ecological metrics, anthropogenic disturbances and wildlife site suitability using RS&GIS.</td>
</tr>
</tbody>
</table>

SYLLABUS

MODULE 1: INTRODUCTION

MODULE 2: DAMAGE ASSESSMENT (8L)
Plant Stress, Disease and Change Detection, Various Vegetation and Climatic Indices for Drought Damage assessment and Monitoring, Pest Control and Monitoring, Salt Affected land Mapping and Monitoring., Land degradation (water logging, salinization, erosion) assessment using RS & GIS.

MODULE 3: LAND USE/LAND COVER (8L)
Basic Concept and Criteria of Land Use / Land Cover Classification, Methodology, Classification System, Level of Classification, Land Capability Assessment.

MODULE 4: FORESTRY CONCEPTS (8L)

MODULE 5: VISUAL AND DIGITAL ANALYSIS: (8L)
Forest Cover, Canopy Density, Biomass Assessment, Forest Fire and Burnt Area Identification, Indian Forest Fire Alarm, Geospatial Modelling of Forest Fire Risk Zones, Sustainable Management, Criteria & Indicators based Decision Framework., Wildlife and Landscape Relationship, Habitat Assessment and Suitability Modelling, Disturbance Index and Analysis.

TEXT BOOKS:

REFERENCE MATERIALS:

Course Evaluation:
Individual assignment, Quizes, Mid and End semester examinations

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD1</th>
<th>CD2</th>
<th>CD3</th>
<th>CD4</th>
<th>CD5</th>
<th>CD6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture by use of boards/LCD projectors/OHP projectors</td>
<td>Assignments/Seminars</td>
<td>Laboratory experiments/teaching aids</td>
<td>Industrial/guest lectures</td>
<td>Industrial visits/institutional visits/field visit</td>
<td>Self- learning such as use of NPTEL materials and internets</td>
</tr>
</tbody>
</table>

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
<th>CO4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>PO2</td>
<td>PO3</td>
<td>PO4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Course Delivery Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>CD1, CD2, CD3, CD6</td>
</tr>
<tr>
<td>CO2</td>
<td>CD1, CD2, CD3, CD4, CD6</td>
</tr>
<tr>
<td>CO3</td>
<td>CD1, CD2, CD3, CD4, CD6</td>
</tr>
<tr>
<td>CO4</td>
<td>CD1, CD2, CD3, CD4, CD5, CD6</td>
</tr>
</tbody>
</table>
Course code: RS 506
Course title: REMOTE SENSING IN DISASTER MANAGEMENT
Pre-requisite(s): (i) Knowledge of Basic Sciences
(ii) Computer Knowledge
Co-requisite(s):
Credits: 3 L:3 T:0 P:0
Class schedule per week: 3
Class: M. TECH
Semester / Level: 01/05 (Monsoon)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives
This course aims to:

1. Impart basic concepts of disaster, its causes and its historical background
2. Enhance student's knowledge about disaster management planning
3. Make the students learn Geoinformatics approaches to deal with disaster risk reduction and management.

Course Outcomes (CO):
On completion of this course, students should be able to:

| CO1 | Explain various types of disasters and responsible factors.
| CO2 | Interpret and discriminate different stages of disaster management planning and utility of geomatics tools in every stage.
| CO3 | Understand administrative structure of disaster management in India.
| CO4 | Understand the ethical and humanitarian values.
| CO5 | Apply integrated geospatial techniques in disaster management and disaster risk reduction.

SYLLABUS

MODULE 1: INTRODUCTION (8L)
Natural and human induced disasters, Fundamental concept of Disaster Management, Various natural disasters and their characterization: Cyclones, Floods, Earth quakes, land subsidence and Landslides, Forest fires, Droughts., Disasters and National losses, Historical perspective of disasters in India., Existing organizational structure for managing disasters in India, NGOs and people participation in disaster management.

MODULE 2: RS & GIS FOR HAZARD, RISK AND DAMAGE ASSESSMENT (8L)

MODULE 3: LONG TERM MITIGATION MEASURES (8L)

MODULE 4: DISASTER MANAGEMENT PLANNING (8L)
Spatial and non-spatial data bank creation, Natural disaster management plans, Shelterbelts, Special structures, Disaster preparedness and Mitigation. Information needs of Disaster management, Operational emergency management – Vulnerability analysis of infrastructures, Settlements and
population, Pre-disaster and post disaster planning for relief operations, Satellite communications during disasters: networks, use of Internets, Warning system - rehabilitation - Post disaster review, Global Disaster Alert and Coordination System.

MODULE 5: DISASTER MODELING AND CASE STUDIES

Known/Generic Models in managing various disasters, Earthquakes in India, Tsunami Impact Assessment, Floods in Indo Gangetic plains, Landslides in Himalayan region, Drought in Indian plateau regions, Glacial lake outburst floods.

TEXT BOOKS:

REFERENCE BOOKS:

Course Evaluation:
Individual assignment, Quizes, Mid and End semester examinations

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD1</th>
<th>CD2</th>
<th>CD3</th>
<th>CD4</th>
<th>CD5</th>
<th>CD6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lecture by use of boards/LCD projectors/OHP projectors</td>
<td>Assignments/Seminars</td>
<td>Industrial/guest lectures</td>
<td>Industrial visits/institutional visits/field visit</td>
<td>Self- learning such as use of NPTEL materials and internets</td>
</tr>
</tbody>
</table>

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Course Delivery Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>CD1, CD2, CD6</td>
</tr>
<tr>
<td>CO2</td>
<td>CD1, CD2, CD3, CD6</td>
</tr>
<tr>
<td>CO3</td>
<td>CD1, CD6</td>
</tr>
<tr>
<td>CO4</td>
<td>CD1, CD5, CD6</td>
</tr>
<tr>
<td>CO5</td>
<td>CD1, CD2, CD3, CD4, CD5, CD6</td>
</tr>
</tbody>
</table>
Course code: RS 507
Course title: REMOTE SENSING IN HYDROLOGY & WATER RESOURCES
Pre-requisite(s): (i) Knowledge of Basic Sciences
(ii) Student must have computer knowledge
Co-requisite(s):
Credits: 3 L:3 T:0 P:0
Class schedule per week: 3
Class: M. TECH
Semester / Level: 01/05 (Monsoon)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives
This course aims to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduce students about hydrologic cycle, Precipitation, Aquifer & Aquifer coefficients, ground water movement and understand the data required for various hydrological studies.</td>
</tr>
<tr>
<td>2.</td>
<td>Make them understand river basin and watershed concepts, parameters and management strategies.</td>
</tr>
</tbody>
</table>

Course Outcomes (CO):
On completion of this course, students should be able to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Describe hydrologic cycle, data requirement for hydrological studies and characterise aquifers and ground water movement.</td>
</tr>
<tr>
<td>CO2</td>
<td>Evaluate basins and drainages to infer surface and near surface characteristics of the area.</td>
</tr>
<tr>
<td>CO3</td>
<td>Describe ground water regimes of India and determine water quality and ground water prospects zones with the use of satellite data.</td>
</tr>
<tr>
<td>CO4</td>
<td>Design suitable watershed management strategy by characterising watersheds for sustainable development of water resources including site suitability analysis for water recharge structures and reservoir sediment estimation.</td>
</tr>
<tr>
<td>CO5</td>
<td>Estimate and model surface runoff, flood, drought, snowmelt runoff and soil erosion.</td>
</tr>
</tbody>
</table>

SYLLABUS

MODULE 1: Basic Concepts (8L)
Hydrologic cycle, Forms of precipitation, Precipitation measurement - conventional vs satellite data based, Data for hydrological studies., Aquifers, Geological materials as aquifers and Aquifer parameters - Porosity, Specific yield, Storage coefficient., Ground water movement - Darcy’s Law, Permeability, Hydraulic Conductivity, Transmissivity.

MODULE 2: Ground-water exploration and evaluation (8L)
Ground water regimes in India, Geophysical techniques for groundwater prospecting, Remote sensing in hydro-geomorphology and ground water prospect mapping, Remote sensing in water quality mapping and monitoring.

MODULE 3: River Basins (8L)
Classification of streams and rivers, Drainage pattern, Delineation of Drainage basin and catchment, Interlinking of river basins, Remote sensing based site selection for river valley projects.

MODULE 4: Watershed management (8L)
Watershed characterization using remote sensing, Morphometric parameters and analysis, Watershed problems and management strategy, Ground water recharge structures and their site suitability analysis.

MODULE 5: Operational applications in Water Resources (8L)
Satellite image based surface runoff modeling, Flood and drought- mapping and modeling, Reservoir sediment estimation, Snow and Glacier Hydrology, Snowmelt runoff modeling, Soil erosion modeling.

TEXT BOOKS:

REFERENCE BOOKS:

Course Evaluation:
Individual assignment, Quizes, Mid and End semester examinations

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD1</th>
<th>Lecture by use of boards/LCD projectors/OHP projectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD2</td>
<td>Assignments/Seminars</td>
</tr>
<tr>
<td>CD3</td>
<td>Laboratory experiments/teaching aids</td>
</tr>
<tr>
<td>CD4</td>
<td>Industrial/guest lectures</td>
</tr>
<tr>
<td>CD5</td>
<td>Industrial visits/institutional visits/field visit</td>
</tr>
<tr>
<td>CD6</td>
<td>Self- learning such as use of NPTEL materials and internets</td>
</tr>
</tbody>
</table>

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3
Course code: RS 516
Course title: REMOTE SENSING IN SNOW AND GLACIER HYDROLOGY
Pre-requisite(s): (i) Knowledge of Basic Sciences
(ii) Student must have undergone RS 501, RS 502
Co- requisite(s):
Credits: 3 L:3 T:0 P:0
Class schedule per week: 3
Class: M. TECH
Semester / Level: 02/05 (Spring)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives
This course aims to:

1. Teach the concepts and role of Snow and Glacier components of the Cryosphere.
2. Make the student understand periglacial and hydrological implications of glaciers using remote sensing.
3. Make students learn various global initiatives and techniques of snowmelt-runoff modelling using remote geospatial techniques.

Course Outcomes (Cos)
On completion of this course, students should be able to:

<table>
<thead>
<tr>
<th>CO1</th>
<th>Explain differences between snow and glaciers, types of glaciers and glacial landforms and its formation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Identify and visually interpret snow and glacier extent on the satellite images and analyse in terms of changes, and quantify relationship between glacial geomorphology and glacier hydrology.</td>
</tr>
<tr>
<td>CO3</td>
<td>Able to measure depth of snow cover, snow water equivalent and snow response to microwave.</td>
</tr>
<tr>
<td>CO4</td>
<td>Explain snowmelt models including inferences on their efficacy to derive global climate change phenomena and able to generate report.</td>
</tr>
</tbody>
</table>

SYLLABUS

MODULE 1: GLACIAL GEOMORPHOLOGY (8L)
Ice and related phenomenon, Types of glaciers, Movement of glaciers, Erosional work of glaciers, Transportation and depositional work of glaciers, Glacier depositional landforms, Glacio-fluvial deposits and landforms, Glacial geomorphic cycle. Meaning and concept of Periglacial climate, Periglacial areas, Permafrost, Mechanism of Periglacial processes, Genetic classification of Periglacial landforms, Periglacial cycle of erosion.

MODULE 2: HYDROLOGICAL ASPECTS OF GLACIERS (8L)
Classification of glaciers and its mapping using Satellite Data, Inventory of glaciers, Spatial characteristics of a glacier, Mass balance of a glacier and its measurement, Depth of a glacier and its measurement.

MODULE 3: SPATIAL SNOW, ICE AND GLACIERS (8L)
Scope and importance of snow and glaciers, Properties of snow and ice - Thermal and Optical, Water Inventory, snow and ice on the earth - snow covered areas on the Globe, the records of glacier retreat and advancement in centuries with spatial distribution.

MODULE 4: MEASUREMENT OF DEPTH, WATER EQUIVALENT AND AREA OF SNOW COVER (8L)
Depth of snow cover, Snow cover water equivalent, Areal extent of snow cover, satellite sensors for snow related studies, Microwave response of snow, Metamorphism of snow.

MODULE 5: REMOTE SENSING BASED SNOWMELT ESTIMATION, SNOWMELT RUNOFF MODELING AND FORCASTING (8L)
Remote Sensing in estimating Snowmelt indices, Comparison of energy balance and index approach, Observed maximum snowmelt rates, Modeling of snowmelt runoff, Storage potential, Time delay in runoff generation, Forecasting of snowmelt runoff, Simulation accuracy, Snowmelt Runoff Model SRM, Precipitation Runoff Modeling System PRMS, HBV MODEL University of British Columbia Watershed Model UBC.

TEXT BOOKS:

REFERENCE BOOKS:

Course Evaluation:
Individual assignment, Quizes, Mid and End semester examinations

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/institutional visits/field visit
CD6	Self- learning such as use of NPTEL materials and internets
Course code: RS 517
Course title: REMOTE SENSING IN CLIMATE CHANGE AND ENVIRONMENTAL IMPACT ASSESSMENT
Pre-requisite(s): (i) Knowledge of Basic Sciences
(ii) Student must have undergone RS 501, RS 502
Co-requisite(s):
Credits: 3 L:3 T:0 P:0
Class schedule per week: 3
Class: M. TECH
Semester / Level: 02/05 (Spring)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives
This course aims to:

1. Enhance student's understanding about climatic system of earth and its changes over time.
2. Teach the fundamental concepts about global warming, climatic dependence of various ecosystems (agriculture, forest and glaciers) and associated mapping methods using remote sensing.
3. Disseminate information about various global initiatives, environmental impact assessment methods and modelling using remote sensing and GIS.

Course Outcomes (Cos)
On completion of this course, students should be able to:

<table>
<thead>
<tr>
<th>CO1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand and explain the differences between weather and climate, local to global climatic variations, and Elnino vs Lanino.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantify relationship between ecosystems (forest, agriculture and glacier) and rainfall, temperature, and map/model the impact of global warming on these systems using RS & GIS.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to identify/map different types of surface waterbodies, glaciers, and drought impact from satellite imageries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe global policies and EIA methods, and link them with local, regional and national developmental initiatives and generate report.</td>
</tr>
</tbody>
</table>
MODULE 1: INTRODUCTION TO WEATHER AND CLIMATE (8L)
Fundamentals of Weather and Climate; Greenhouse effect and Global Warming; Local, Regional, Continental and global weather Pattern; Global bio-geo-Climatic conditions; Weather variations and associated effects - Elnino, LaNino, Southern Oscillation, Drought and Flood Scenario; Mapping weather parameters with a focus on rainfall, temperature and wind. Remote Sensing missions for weather monitoring.

MODULE 2: AGRICULTURE, FOREST AND CLIMATE (8L)
Vegetation growth rhythm and climatic interaction; Food security, Drought monitoring and forecast; Weather dependence of Agriculture; Climate change impact on agriculture economy. Carbon accounting with climate change scenario; Time-Series Satellite data; space-time dynamics; Phenology of Vegetation; Global changes in phenology; Droughts in Amazon and monitoring mechanism; Forest Fire and climate change.

MODULE 3: SNOW, GLACIER WATER AND CLIMATE (8L)
Surface water mapping and monitoring; snow cover mapping; snowmelt runoff forecasting; Glaciers Inventory; Glacial Mass Balance and Glacial retreat with changing climate.

MODULE 4: ENVIRONMENTAL IMPACT ASSESSMENT (8L)
Scope of EIA; EIA Methods and Mitigation; Criteria and Indicators; Certification; Ecological, Economical and Demographic impact assessment.

MODULE 5: GLOBAL POLICIES (8L)
United Nations Framework Convention on Climate Change (UNFCCC); Kyoto Protocol; Intergovernmental Panel on Climate Change (IPCC); Reducing Emissions from Deforestation and forest Degradation (REDD); Convention of Biological Diversity (CBD); Committee on World Food Security.

TEXT BOOKS:

REFERENCE MATERIALS:

Course Evaluation:
Individual assignment, Quizes, Mid and End semester examinations

Course Delivery Methods

CD1	Lecture by use of boards/LCD projectors/OHP projectors
CD2	Assignments/Seminars
CD3	Laboratory experiments/teaching aids
CD4	Industrial/guest lectures
CD5	Industrial visits/institutional visits/field visit
CD6	Self-learning such as use of NPTEL materials and internets

Mapping between Course Outcomes and Programme Outcomes

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3
SYLLABUS: M.Tech. REMOTE SENSING MO-2018

DEPARTMENT OF REMOTE SENSING, BIRLA INSTITUTE TECHNOLOGY, MESRA, RANCHI 835215

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Course Delivery Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>CD1, CD2, CD6</td>
</tr>
<tr>
<td>CO2</td>
<td>CD1, CD2, CD3, CD4, CD5, CD6</td>
</tr>
<tr>
<td>CO3</td>
<td>CD1, CD3, CD5, CD6</td>
</tr>
<tr>
<td>CO4</td>
<td>CD1, CD2, CD4, CD6</td>
</tr>
</tbody>
</table>

Course code: RS 602

Course title: DATA SOURCES, STATISTICS AND RESEARCH METHODS IN GEOSPATIAL DOMAIN

Pre-requisite(s): Knowledge of statistics
Co- requisite(s): Knowledge of RS & GIS

Credits: 4
L:3 T:1 P:0

Class schedule per week: 4
Class: M.Sc.
Semester / Level: 03/06 (Monsoon)
Branch: Geoinformatics

Name of Teacher:

Course Objectives

This course aims to make the students:

1. Learn about various geo-spatial data providers at global and national level.
2. Understand various steps and important components involved in project management, field report preparation, and sampling statistics.
3. Gain knowledge about importance of quality, ethics, and different research methods being used in the geo-spatial domain.

Course Outcomes (CO):

On completion of this course, students should be able to:

CO1.	Explain the formulation of various schemes in Geoinformatics domain
CO2.	Write Project reports and project proposals
CO3.	Apply research methods quantitatively and qualitatively
CO4.	Use the National/Global standards of research

SYLLABUS

MODULE 1: GEO-SPATIAL RESEARCH & DATA SOURCES (8L)

Geo-spatial Research Problems., National and International Projects: Past and Recent, Different types of Geo-spatial data requirement, USGS Global Visualization Viewer (GloVis), NASA Earth Observation (NEO), USGS Earth Explorer, ESA’s Sentinel data, NOAA, IPPMUS Terra, LANCE, VITO Vision, Bhuvan, MOSDAC, India-WRIS, Identification of problems at regional and Local level.

MODULE 2: FIELD AND PROJECT REQUIREMENTS (8L)

MODULE 3: SAMPLING AND STATISTICS (8L)

MODULE 4: METHODS IN GEOINFORMATICS (8L)
Types of Research Methods: Quantitative and Qualitative, Research Techniques and Tools: Questionnaire, Interview, Observation, etc., Analytical methods in Geoinformatics, Different models in various Natural Resources Monitoring.

MODULE 5: TOOLS, QUALITY AND ETHICS (8L)
Tools & Methods: Project Communications and Presentation, Intellectual property Right, Plagiarism and associated softwares, Evaluating Quality of Research paper/journal: Citation Index, Impact Factor, National/Global standards, SCI, SCOPUS, etc., Referencing/Citation methods, Reference management software.

TEXT BOOKS:

REFERENCE BOOKS:

Course Evaluation:
Individual assignment, Quizes, Mid and End semester examinations

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD1</td>
<td>Lecture by use of boards/LCD projectors/OHP projectors</td>
</tr>
<tr>
<td>CD2</td>
<td>Assignments/Seminars</td>
</tr>
<tr>
<td>CD3</td>
<td>Laboratory experiments/teaching aids</td>
</tr>
<tr>
<td>CD4</td>
<td>Industrial/guest lectures</td>
</tr>
<tr>
<td>CD5</td>
<td>Industrial visits/institutional visits/field visit</td>
</tr>
<tr>
<td>CD6</td>
<td>Self- learning such as use of NPTEL materials and internets</td>
</tr>
</tbody>
</table>

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3
SYLLABUS: M.Tech. REMOTE SENSING MO-2018

DEPARTMENT OF REMOTE SENSING, BIRLA INSTITUTE TECHNOLOGY, MESRA, RANCHI 835215

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>Course Delivery Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>CD1, CD2, CD6</td>
</tr>
<tr>
<td>CO2</td>
<td>CD1, CD2, CD6</td>
</tr>
<tr>
<td>CO3</td>
<td>CD1, CD2, CD6</td>
</tr>
<tr>
<td>CO4</td>
<td>CD1, CD2, CD4, CD6</td>
</tr>
</tbody>
</table>

LABORATORIES

Course code: RS 503
Course title: REMOTE SENSING & DIGITAL SATELLITE IMAGE PROCESSING LAB

Credits: 2 L:0 T:0 P:4
Class schedule per week: 4

Class: M. TECH

Semester / Level: 01/05 (Monsoon)

Branch: REMOTE SENSING

Name of Teacher:

Course Objectives
This course aims to make the student learn practical aspects related to:

1. Usage of diverse remote sensing data for extracting needed geo-spatial information.
2. Execution of various analogue and digital information extraction techniques, both manually and using computers.

Course Outcomes (CO):
On completion of this course, students should be able to:

<table>
<thead>
<tr>
<th>CO1</th>
<th>Interpret Satellite Hard copy FCC images and Survey of India Toposheets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Collect Field Spectra for various land cover features.</td>
</tr>
<tr>
<td>CO3</td>
<td>Execute various radiometric and spatial enhancement techniques and create land cover map using different clustering techniques using DIP methods.</td>
</tr>
</tbody>
</table>

LAB EXERCISES

Lab 1 Understanding Remote Sensing Data and Visual Interpretation

Lab 2 Import / Export of Satellite Data, Display, Analysis, and Digital interpretation of earth surface features in Standard FCC

Lab 3 Radiometric and atmospheric corrections

Lab 4 Geo-referencing and Geocoding

Lab 5 Field Spectra Collection: vegetation, bare soil, and concrete using Spectro Radiometer

Lab 6 Analysis of satellite derived spectral response and field spectra

Lab 7 Study of the various contrast enhancement techniques

Lab 8 Spectral Enhancement (Ratio images and PCA) Techniques

Lab 9 Spatial Enhancement: Low Pass Filtering & High Pass Filtering Techniques

Lab 10 Multi-Resolution (Fusion) Analysis

Lab 11 Unsupervised Classification

Lab 12 Supervised Classification & Accuracy Evaluation

Lab 13 Advance Classification
Course Evaluation:
Individual Experiment, Lab Quiz, Lab Record, End Sem Lab Examination and Viva

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD1</th>
<th>Laboratory experiments</th>
</tr>
</thead>
</table>

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3

Course code: RS 504
Course title: GEOGRAPHIC INFORMATION SYSTEMS & NAVIGATION SYSTEMS LABORATORIES
Pre-requisite(s): Basic physics
Co-requisite(s):

Credits: 2 L:0 T:0 P:4
Class schedule per week: 4
Class: M. TECH
Semester / Level: 01/05 (Monsoon)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives
This course aims to impart practical knowledge related to:

1. Creation of spatially coherent Geo-database containing vector and raster.
2. Solving real life spatial problems involving various analytical techniques for both vector and raster data.
3. Collection of GPS data, execution of processing techniques and integrate with other spatial layers.

Course Outcomes (CO):
On completion of this course, students should be able to:

<table>
<thead>
<tr>
<th>CO1</th>
<th>Describe various GIS techniques within spatial analytical framework and handle huge spatial and non-spatial database.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Apply spatial analysis techniques of ArcGIS software to solve environmental and societal problems and challenges.</td>
</tr>
<tr>
<td>CO3</td>
<td>Collect GNSS data in different survey modes and post process them to generate output to be integrated in GIS environment.</td>
</tr>
<tr>
<td>CO4</td>
<td>Handle integrated geospatial techniques and apply them in solving real world problems.</td>
</tr>
</tbody>
</table>
LAB EXERCISES

Lab 1 Basics of Geodatabase, Vector, Raster, Catalogue and Georeferencing
Lab 2 Topology creation and correcting topological errors & Non-topological editing.
Lab 3 Linking spatial with non-spatial data.
Lab 4 Layout generation (designing a map, cartographic elements, thematic mapping).
Lab 5 Vector analysis I (Query, Overlay, Clip, Dissolve and Merge Functions).
Lab 6 Raster analysis I (Arithmetic, Logical and Global functions)
Lab 7 Raster Analysis II (Local, Focal and Zonal functions)
Lab 8 Introduction to GNSS receivers ,initial settings and creating codes and attribute table in GNSS receiver
Lab 9 Understanding different projection, coordinate system and Datums &Standardisation
Lab 10 Point, Line and Polygon Data collection using GNSS for Planimetric Measurements
Lab 11 GNSS Data collection in differential mode positioning
Lab 12 Post processing of the GNSS data and Export functions
Lab 13 GNSS and GIS integrations output preparation

Course Evaluation:
Individual Experiment, Lab Quiz, Lab Record, End Sem Lab Examination and Viva

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory experiments</td>
</tr>
</tbody>
</table>

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3
Course code: RS 508
Course title: REMOTE SENSING IN AGRICULTURE AND FORESTRY LABORATORY
Pre-requisite(s): Basic physics
Co- requisite(s):
Credits: 2 L:0 T:0 P:4
Class schedule per week: 4
Class: M. TECH
Semester / Level: 01/05 (Monsoon)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives
This course aims to make the student:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Utilise diverse remote sensing data for extracting vegetation related spatial information.</td>
</tr>
<tr>
<td>2.</td>
<td>Execute appropriate digital image processing and modelling techniques for diverse agriculture and forestry applications.</td>
</tr>
</tbody>
</table>

Course Outcomes (CO):
On completion of this course, students should be able to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Visually and Digitally differentiate various agriculture and forestry features from satellite data.</td>
</tr>
<tr>
<td>CO2</td>
<td>Use various remote sensing and GIS tools for extracting land cover, land capability, degradation, waterlogging, and model acreage, lifezones and fire risk.</td>
</tr>
<tr>
<td>CO3</td>
<td>Execute spatial models related to landscape metrics, biodiversity, wild life habitat suitability, and environmental problems.</td>
</tr>
</tbody>
</table>

LAB EXERCISES

Lab 1 Visual Interpretation of different types of forests and crops.
Lab 2 On-Screen Land Degradation Mapping
Lab 3 Digital classification of Agriculture and Forestry Types
Lab 4 Detection of Plant Stress, Change Detection and Salt Affected Areas.
Lab 5 Desertification, Waterlogging and Flood Damage Assessment using RS & GIS.
Lab 6 Land Cover Mapping using multi-temporal RS data.
Lab 7 Acreage and Land Capability Modelling using RS & GIS.
Lab 8 Climatic, Altitudinal and Topographic relation with Life Zones and its Modelling.
Lab 9 Landscape Metrics Modelling.
Lab 10 Anthropogenic Disturbance Modelling using RS & GIS
Lab 11 Biodiversity Modelling using RS & GIS
Lab 12 Wildlife Habitat Modelling using RS & GIS
Lab 13 Forest Fire Risk Modelling using RS & GIS
Course Evaluation:
Individual Experiment, Lab Quiz, Lab Record, End Sem Lab Examination and Viva

Course Delivery Methods

| CD1 | Laboratory experiments |

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3

Course code: RS 509
Course title: REMOTE SENSING IN DISASTER MANAGEMENT LABORATORY
Pre-requisite(s): Basic physics
Co-requisite(s):

Credits: 2
L:0 T:0 P:4
Class schedule per week: 4
Class: M. TECH
Semester / Level: 01/05 (Monsoon)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives
This course aims to make the student:

1. Utilise diverse remote sensing data for extracting spatial information associated with Disasters.
2. Execute various information extraction and modelling techniques to assess vulnerability and risk associated with different disasters.

Course Outcomes (CO):
On completion of this course, students should be able to:

CO1	Take help from Bhuvan Disaster services and other online web portal for data collection related to disasters and causing factors of disaster.
CO2	Prepare map of different natural and man-made disaster prone areas.
CO3	Apply integrated geospatial techniques in disaster management and disaster risk reduction.

LAB EXERCISES

Lab 1-2 Explore Bhuvan & Google Earth etc. in general, and specifically for Disaster services and analyse the situation in your state
Lab 3 Mapping flood inundated area using satellite data
Lab 4 Download MODIS Fire data and TRMM rainfall data, and analyse.
Lab 5 Download MODIS Snow related data and analyse.
Lab 6 Identify the drought prone region using vegetation indices derived from satellite data
Lab 7 Identify and map landslides from satellite images and compare the same with high resolution Google-earth image
Lab 8 Delineate forest fire regions in the given study area with the help of MODIS LST product for a particular date and compare your result with Bhuvan site
Lab 9 Mapping lightning incidence location
Lab 10 Water sample collection from different location and its analysis for assessing different water quality parameters and comparison with the BIS standards
Lab 11 Download Air quality data from CPCB website for your city and find out the trend of different air quality parameters for last few years
Lab 12 Compare the Air quality parameters for metro cities (Before Diwali and after Diwali)
Lab 13 Modelling Hazard Zonation (flood/earthquake/landslide).

Course Evaluation:
Individual Experiment, Lab Quiz, Lab Record, End Sem Lab Examination and Viva

Course Delivery Methods
| CD1 | Laboratory experiments |

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3

Course code: RS 510
Course title: REMOTE SENSING IN HYDROLOGY AND WATER RESOURCES LABORATORY
Pre-requisite(s): Basic physics
Co- requisite(s):
Credits: L:0 T:0 P:4
Class schedule per week: 4
Class: M. TECH
Semester / Level: 01/05 (Monsoon)
Branch: REMOTE SENSING
Name of Teacher:
Course Objectives
This course aims to make the student:

1. Map Hydrology related information using ground observation as well as satellite data.
2. Model rainfall, ground water and snow related parameters.

Course Outcomes (CO):
On completion of this course, students should be able to:

CO1	Map Rainfall from various data sources.
CO2	Delineate and characterise watershed by computing morphometric parameters.
CO3	Assess groundwater potential and water quality.
CO4	Model Snow melt run off, flood and soil erosion.

LAB EXERCISES

Lab 1 Downloading of Satellite Rainfall data (TRMM) and Generating Spatial Rainfall Map.
Lab 2 Downloading of Rainfall point data and generating spatial rainfall map using interpolation techniques.
Lab 3 Delineation of watershed map using DEM and topographic maps.
Lab 4 Calculation of various morphometric parameters and characterise watershed.
Lab 5 Mapping of various land forms with the help of satellite data.
Lab 6 Interpretation of Lineaments and analysis.
Lab 7&8 Mapping of Hydrogeomorphology and Ground water prospects.
Lab 9 Estimation of Water quality and Reservoir sedimentation.
Lab 10 Estimation of USLE parameters for soil erosion modelling.
Lab 11 Conducting Geo-electric Resistivity for ground water exploration.
Lab 12 Mapping of Snow and Glaciers using digital techniques.
Lab 13 Interpreting flood plains and mapping flood hazard zones using RS & GIS.

Course Evaluation:
Individual Experiment, Lab Quiz, Lab Record, End Sem Lab Examination and Viva

Course Delivery Methods
| CD1 | Laboratory experiments |

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3
Course code: RS 513
Course title: AERIAL AND SATELLITE PHOTOGRAMMETRY & IMAGE INTERPRETATION LABORATORIES

Credits: 2 L:0 T:0 P:4
Class schedule per week: 4
Class: M. TECH
Semester / Level: 02/05 (Spring)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives

This course aims to make the student learn practical skills related to:

1. Interpretation and Measurement of 2D and 3D information about various features using Aerial photos, Satellite and UAV data.
2. Utilisation of various analogue and digital photogrammetry based extraction techniques, both manuallay and using computers.

Course Outcomes (CO):

On completion of this course, students should be able to:

CO1	Use Pocket Stereoscope and make planimetric measurements from Aerial Photos.
CO2	Interpret Satellite Images and Aerial photos visually and with stereoscope for delineating various landforms and landcover features.
CO3	Use photogrammetric techniques and tools under Digital Environment so as to create digital surface models, and extract point, line and polygon features and their position, height, area and volume using Aerial, Satellite and UAV data.

LAB EXERCISES

Lab 1-2 Satellite Image Interpretation of various Terrestrial Features.
Lab 3 Use of Pocket & Mirror Stereoscope, parallax bar and measurement of distance and height
Lab 4-5 Stereoscopic vision and photo interpretation of B/W & Colour aerial photograph
Lab 6 Differential parallax measurement and contouring by parallax bar method
Lab 7 Digital Stereoscopic Model - Non-Oriented Approach
Lab 8 Digital Stereoscopic Model - Interior & Exterior Orientation
Lab 9 Digital Stereoscopic Model - 3D based Plannimetric Measurements
Lab 10 Digital Ortho-Rectification - Relief Displacement Correction
Lab 11 Point, Line & Polygon Feature Extraction using Stereopair from High Spatial Resolution Aerial & satellite images
Lab 12-13 UAV based Data acquisition and Modelling.
Course Evaluation:
Individual Experiment, Lab Quiz, Lab Record, End Sem Lab Examination and Viva

Course Delivery Methods

| CD1 | Laboratory experiments |

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th></th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>PO2</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>PO3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO4</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PO5</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3

Course code: RS 514
Course title: ADVANCED REMOTE SENSING AND GEOSPATIAL MODELLING LABORATORY
Pre-requisite(s): Basic physics
Co- requisite(s):

Credits: 2 L:0 T:0 P:4
Class schedule per week: 4
Class: M. TECH
Semester / Level: 02/05 (Spring)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives
This course aims to make the student with the ability to:

1. Handle advanced sensor data and extract information using diverse software environment.
2. Execute various spatial techniques and models to quantify and solve real-life spatial patterns and problems.

Course Outcomes (CO):
On completion of this course, students should be able to:

<table>
<thead>
<tr>
<th>CO1</th>
<th>Download, Import, use and understand diverse spatial and satellite data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Understand and use various remote sensing and GIS softwares, tools and models for information extraction in Stand-alone and Web environment.</td>
</tr>
<tr>
<td>CO3</td>
<td>Create a workflow and practically execute models for understanding spatial patterns, processes and solve real-life spatial problems.</td>
</tr>
</tbody>
</table>

LAB EXERCISES

Lab 1 Handling Thermal and Microwave Data
Lab 2 Modelling Urban Heat Island using Thermal data
Lab 3 SAR data processing and applications
Lab 4 Hyperspectral data processing
Lab 5 Spectral Mixture Analysis, Feature Extraction and Classification using Hyperspectral data
Lab 6 LIDAR data Processing
Lab 7 Surface Interpolation using Kriging technique
Lab 8 Spatial Pattern Analysis using GIS
Lab 9 Understanding Two-point and Multi-point Statistics
Lab 10 Modelling Resolution Uncertainty and Error in the Spatial Data
Lab 11 Spatial Regression and Geographically Weighted Regression
Lab 12 Smoothing and information extraction using Time Series Data
Lab 13 WebGIS related services, programming and Scripting

Course Evaluation:
Individual Experiment, Lab Quiz, Lab Record, End Sem Lab Examination and Viva

Course Delivery Methods

| CD1 | Laboratory experiments |

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3

Course code: RS 515
Course title: PROGRAMMING AND CUSTOMISATION IN GEOSPATIAL DOMAIN LABORATORY
Pre-requisite(s): Basic physics
Co-requisite(s):

Credits: 2 L:0 T:0 P:4
Class schedule per week: 4
Class: M. TECH
Semester / Level: 02/05 (Spring)
Branch: REMOTE SENSING
Name of Teacher:
Course Objectives
This course aims to impart following practical knowledge to students:

1. Practically carry out programming concepts learned in theory class.
2. Write simple to advanced programming in different languages.

Course Outcomes (CO):
On completion of this course, students should be able to:

<table>
<thead>
<tr>
<th>CO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand and Use Compiler programming Environment</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand and appropriately Utilise various libraries, Function and Syntaxes.</td>
</tr>
<tr>
<td>CO3</td>
<td>Write a simple to complicated Programming Codes in C, R and Python.</td>
</tr>
</tbody>
</table>

LAB EXERCISES

Lab 1. Introduction to computers & programming concept
Lab 2. Programming using concepts of Variables, Operators
Lab 3. Programming using Control Structures
Lab 4. Programming using Decision Making
Lab 5. Programming using Functions
Lab 6. Programming using Arrays & Strings
Lab 7, 8, 9 & 10 Basic and Advanced Geospatial Programming using R
Lab 11 Programming using concepts Python
Lab 12 Using Python to deal with Functions and Objects
Lab 13. Using Python to deal with Arrays and Satellite Images

Course Evaluation:
Individual Experiment, Lab Quiz, Lab Record, End Sem Lab Examination and Viva

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD1</th>
<th>Laboratory experiments</th>
</tr>
</thead>
</table>

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3
Course code: RS 518
Course title: REMOTE SENSING IN SNOW AND GLACIER HYDROLOGY LABORATORY
Pre-requisite(s): Basic physics
Co- requisite(s):

Credits: 2 L:0 T:0 P:4
Class schedule per week: 4
Class: M. TECH
Semester / Level: 02 /05 (Spring)
Branch: REMOTE SENSING
Name of Teacher:

Course Objectives
This course aims to impart practical knowledge about:

1. Mapping of Snow and associated parameters using satellite data
2. Execution skills for various analogue and digital image processing techniques to map and model various processes associated with snow and glaciers.

Course Outcomes (CO):
On completion of this course, students should be able to:

CO1	Visually and Digitally differentiate various snow covered areas and Glacier landforms from satellite data.
CO2	Use optical remote sensing data and GIS tools to quantify glacial mass balance, snow water equivalent and snow indices.
CO3	Use Radar remote sensing data to quantify snow and glacier conditions.

LAB EXERCISES

Lab 1 Visual Interpretation of snow and glacier on optical satellite data.
Lab 2-3 On-Screen glacial landform mapping
Lab 4-5 Glacier area extraction and cumputation -Accumulation and Ablation using RS data
Lab 6-7 Computing glacier mass balance using Area Accumulation Ratio method.
Lab 8 Snow cover area and glacier mapping using SAR data.
Lab 9 Snow water equivalent estimation using delta - K technique.
Lab 10 Generation of Snow Indices for delineating snow cover.
Lab 11-12 SAR data processing and generation of snow backscater image
Lab 13 Wet SCA estimation using SAR data.

Course Evaluation:
Individual Experiment, Lab Quiz, Lab Record, End Sem Lab Examination and Viva

Course Delivery Methods

| CD1 | Laboratory experiments |

DEPARTMENT OF REMOTE SENSING, BIRLA INSTITUTE TECHNOLOGY, MESRA, RANCHI 835215
Course Objectives

This course aims to make the student with following abilities:

1. To create report and maps about various environmental features and parameters using satellite data and based on hard copy maps/reports provided by national/global mapping agencies.

2. To carry out various digital image processing techniques and models to quantify continuously changing environmental features.

Course Outcomes (CO):

On completion of this course, students should be able to:

<table>
<thead>
<tr>
<th>CO1</th>
<th>Visually and Digitally differentiate various environmental conditions including vegetated features and Glaciers from satellite data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Use time-series remote sensing data and GIS tools to quantify drought condition/impact, vegetation growth rhythm, Glacier changes and environmental impact.</td>
</tr>
<tr>
<td>CO3</td>
<td>Gather and infer knowledge from various published reports and policies and link with local to regional problems and understand need for appropriate tools and models.</td>
</tr>
</tbody>
</table>

LAB EXERCISES

Lab 1 Visual Interpretation of different types of forests and crops.
Lab 2 On-Screen Mapping of Waterbodies, Wetlands and Glaciers.
Lab 3 Biomass and Carbon Accounting using RS & GIS.
Lab 4 Vegetation Phenology using Time-Series RS data.
Lab 5& 6 Drought Condition Assessment using RS & GIS.
Lab 7 & 8 Glacier Condition and Change Assessment using Temporal RS data.
Lab 9 Environmental Impact Assessment methods (example of Mining) using RS & GIS.
Lab 10& 11 TRMM based Rainfall Mapping and relating with Ground Meteorological Data.
Lab 12 Collect various Global Policies on UNFCCC, IPCC, REDD, CBD and relate with Indian Governmental Initiatives – Generate a Report.
Lab 13 Sustainability and Certification Methods.

Course Evaluation:
Individual Experiment, Lab Quiz, Lab Record, End Sem Lab Examination and Viva

Course Delivery Methods

<table>
<thead>
<tr>
<th>CD1</th>
<th>Laboratory experiments</th>
</tr>
</thead>
</table>

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAMME OUTCOMES

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

< 34% = 1, 34-66% = 2, > 66% = 3