LECTURE PLAN

Course Name:Engineering MathematicsCourse code:MA1201Academic Year:2016 – 17Class:BEAcademic Session:Monsoon 2017Semester:IPre-requisite(s):Basics of Algebra, Calculus, Trigonometry, Coordinate Geometry

Credits: 4 (3 Lectures, 1 Tutorial)

<u>Course Description:</u> This course is intended as a basic course which enables the students to get the detailed idea about: infinite sequences and series, functions of two or more variables, their differentiation, properties and applications, integral calculus - multiple integrals and their applications, polar equations of conics and their properties, vector differential calculus, and vector integral calculus.

<u>Course Outcomes</u>: After completion of the course, the learners will be able to: decide the behaviour of sequences and series using appropriate tests, get an understanding of partial derivatives and their applications in finding maxima - minima problems, apply the principles of integral to solve a variety of practical problems in engineering and sciences, gain an understanding of polar equations of conics, their tangent, normal, chord of contact etc., solve problems involving derivatives (gradient, divergence, curl etc.) and integrals (surface, volume etc.) of vector functions, demonstrate a depth of understanding in advanced mathematical topics, and enhance and develop the ability of using the language of mathematics in engineering.

Course Coordinator: Dr. (Mrs.) Anjana Pradhan Ghorai

Team of Faculty members: Dr. (Ms.) Prabjot Kaur, Dr. AbhinavTandon, Dr. SatyabrataAdhikari,

Dr.Randhir Singh, Dr.(Ms.) S. D. Jabeen.

Text Books:

TB 1: M.D. Weir, J. Hass and F. R. Giordano: Thomas' Calculus, 11th edition, Pearson Educations, 2008. **TB** 2: Dennis G. Zill and Warren S. Wright: Advanced Engineering Mathematics, 4th edition, Jones andBartlertt Publishers, 2010

Reference Books:

RB 1: E. Kreyszig: Advanced Engineering Mathematics, 8th Edition John Wiley and sons 1999.

RB 2: T.M. Apostol: Calculus Vols 1 and 11.2ndEdition(reprint), John Wiley and sons, 2015.

RB 3: Robert Wrede& Murray R. Spiegel, Advanced Calculus, 3rd Ed., Schaum's outline series, McGraw-Hill Companies, Inc.,2010.

Serial No.	Learning objectives	Topic(s) to be covered	Lecture Hr.	Preferred Book(s)	Total no. of Lecture Hrs.
Module I	The aim of these lectures is to introduce the concept of a sequence which arises naturally in various fields.	Sequences, bounded sequences, upper and lower bounds, monotonic sequences	1	TB1	3
		limits of a sequence, convergence of sequence	2	TB1	
		Cauchy's general principle of convergence, Cauchy's theorems on limits (No proof).	3	RB3	
Module II	The aim of these lectures is to gain knowledge of how to add	Convergence of series of real numbers of	4-5	TB1	7

	infinitely many numbers	positive terms, p - series			
	together. which leads to the theory of infinite series.	test Cauchy's root test, D'	6-8	TB1	
	This theory is applicable to deal	Alembert's ratio test,	0-0	&	
	with general functions which	Raabe's test. Gauss's		RB3	
	are often solutions to important	Ratio Test, Logarithmic		RBS	
	problems in science and	and Higher logarithmic			
	engineering.	Ratio			
		Leibnitz's Rule for alternating series Test.	9	TB1	
		Absolute and	10	TB1	
		conditional convergence	10	111	
Module	The aim of these lectures is to	Generalized Mean	11	TB1	9
III	deal with the representation of	Value Theorem,		121	
	the known differentiable	Maclaurin's series,			
	function as an infinite sum of	Taylor's series of			
	power of x.	functions			
	As most entities in the real	Functions of several	12-13	TB1	
	world are dependent of several	variables, level curves,			
	independent entities, the	limits, continuity,			
	Functions of several variables,	partial Derivatives.			
	its limits, continuity and	Euler's theorem on	14	RB3	
	differentiability has been introduced.	Homogeneous functions	15 16	TD 1	
	miroduced.	Chain Rule, transformation of	15-16	TB1	
		transformation of independent variables,			
		total differential,			
		Jacobians.			
		Taylor's series in two or	17	TB1	
		more variables.			
		Maximum, minimum	18-19	TB1	
		and saddle points of			
		functions of two			
		variables. Several			
		independent variables			
		Lagrange's method of			
		Undetermined Multipliers.			
Module	These lectures introduce the	Beta and Gamma	20	RB1	6
IV	integrals of functions of several	functions.	20	KDI	
	variables over a region in plane	Double integrals, area,	21-22	TB1	1
	and space. The theory of				
	multiple integrals has wide	integration, evaluation			
	range of application specially in	of integrals by			
	calculating volumes, areas in	transforming into polar			
	plane, moments and centers of	co-ordinates.		TD 1	4
	mass etc.	Evaluation of Triple	23	TB1	
		integrals. Volume and surface	24-25	TB1	1
		area by double and	44-43	IDI	
		area by double alla			

Module V	Polar coordinates are especially important in Astronomy and Astronautical engineering because the satellites, moons, planets all move with respect to a point(sun) and approximately move along the ellipses, parabolas, hyperbolas etc. All these curves can be described with a single relatively simple polar equation.	triple integration by transforming in to cylindrical and spherical polar coordinates Sketching polar equations of conic section. Equation of chord, tangent and normal line to a conic section. equation of chord of contact, director circle and asymptote to a conic section.	26 27 28-29	TB1	4
Module VI		First order differential equations, linear and Bernoulli's equation, Reduction of order.	30	TB2	7
	In these lectures, the calculus of vector valued functions are	Curvature, normal vector, torsion and TNB	31	TB1	
	introduced to describe the paths and motions of objects moving	frame Tangential and normal	32-33	TB2 TB1	
	in a plane or space. The new quantities that describe how an object's path can turn and twist in space are also introduced.	components of velocity and acceleration, radial and transverse acceleration, Motion in polar and cylindrical coordinates	32-33	& TB2	
		Directional derivative, Gradient, Divergence and curl. Expansions, identities. Tangent plane and normal line.	34-35	TB2	
		Gradient, divergence and curl in curvilinear coordinates.	36	TB2	
Module VII	In these lectures, the theory of integration is extended to curves and surfaces in a plane or space. The fundamental theorem of vector integral calculus and its	Line integrals, Work, Circulation, Flux, Path independence, Potential function, Conservative field,	37-38	TB2	4
	mathematical consequence is discussed along with physical applications.	Green's theorem in plane, surface and volume integrals Gauss's Divergence theorem, Stoke's theorem. Applications	39-40	TB2	

Assessment tools & Evaluation procedure

Assessment Tool	% Contribution during Assessment
Mid Sem. Examination Marks	25
End Sem. Examination Marks	60
Quiz (Best of Two out of Three)	15

NOTICE: All notices related to the course will be displayed in the Department of Mathematics notice board.