LECTURE PLAN

Course Name:Engineering MathematicsCourse code:MA1201Academic Year:2016 – 17Class:BEAcademic Session:Monsoon 2017Semester:IPre-requisite(s):Basics of Algebra, Calculus, Trigonometry, Coordinate Geometry

Credits: 4 (3 Lectures, 1 Tutorial)

<u>Course Description:</u> This course is intended as a basic course which enables the students to get the detailed idea about: infinite sequences and series, functions of two or more variables, their differentiation, properties and applications, integral calculus - multiple integrals and their applications, polar equations of conics and their properties, vector differential calculus, and vector integral calculus.

<u>Course Outcomes</u>: After completion of the course, the learners will be able to: decide the behaviour of sequences and series using appropriate tests, get an understanding of partial derivatives and their applications in finding maxima - minima problems, apply the principles of integral to solve a variety of practical problems in engineering and sciences, gain an understanding of polar equations of conics, their tangent, normal, chord of contact etc., solve problems involving derivatives (gradient, divergence, curl etc.) and integrals (surface, volume etc.) of vector functions, demonstrate a depth of understanding in advanced mathematical topics, and enhance and develop the ability of using the language of mathematics in engineering.

Course Coordinator: Dr. (Mrs.) Anjana Pradhan Ghorai

Team of Faculty members: Dr. (Ms.) Prabjot Kaur, Dr. AbhinavTandon, Dr. SatyabrataAdhikari,

Dr.Randhir Singh, Dr.(Ms.) S. D. Jabeen.

Text Books:

TB 1: M.D. Weir, J. Hass and F. R. Giordano: Thomas' Calculus, 12th edition, Pearson Educations, 2008. **TB 2**: Dennis G. Zill and Warren S. Wright: Advanced Engineering Mathematics, 4th edition, Jones andBartlertt Publishers, 2010

Reference Books:

RB 1: E. Kreyszig: Advanced Engineering Mathematics, 8th Edition John Wiley and sons 1999.

RB 2: T.M. Apostol: Calculus Vols 1 and 11.2ndEdition(reprint), John Wiley and sons, 2015.

RB 3: Robert Wrede& Murray R. Spiegel, Advanced Calculus, 3rd Ed., Schaum's outline series, McGraw-Hill Companies, Inc.,2010.

Serial No.	Learning objectives	Topic(s) to be covered	Lecture Hr.	Preferred Book(s)	Total no. of Lecture Hrs.
Module I	The aim of these lectures is to introduce the concept of a sequence which arises naturally in various fields.	Sequences, bounded sequences, upper and lower bounds, monotonic sequences	1	TB1 (10.1)	3
		limits of a sequence, convergence of sequence	2	TB1 (10.1)	
		Cauchy's general principle of convergence, Cauchy's theorems on limits (No proof).	3	RB3 (Ch.2)	
Module II	The aim of these lectures is to gain knowledge of how to	Convergence of series of real numbers of	4-5	TB1 (10.2-10.4)	7

	add infinitely many numbers	positive terms, p -			
	together. which leads to the	series test			
	theory of infinite series.	Cauchy's root test, D'	6-8	TB1	
	This theory is applicable to	Alembert's ratio test,		(10.5)	
	deal with general functions	Raabe's test. Gauss's		&	
	which are often solutions to	Ratio Test,		RB3	
	important problems in	Logarithmic and		(Ch.11)	
	science and engineering.	Higher logarithmic			
		Ratio			
		Leibnitz's Rule for	9	TB1	
		alternating series Test.		(10.6)	
		Absolute and	10	TB1	
		conditional		(10.6)	
		convergence			
Module	The aim of these lectures is	Generalized Mean	11	TB1	9
III	to deal with the	Value Theorem,		(10.8)	
	representation of the known	Maclaurin's series,			
	differentiable function as an	Taylor's series of			
	infinite sum of power of x.	functions			
	As most entities in the real	Functions of several	12-13	TB1	
	world are dependent of	variables, level		(14.1-14.3)	
	several independent entities,	curves, limits,			
	the Functions of several	continuity, partial			
	variables, its limits,	Derivatives.			
	continuity and	Euler's theorem on	14		
	differentiability has been	Homogeneous			
	introduced.	functions			
		Chain Rule,	15-16	TB1	
		transformation of		(14.4)	
		independent variables,			
		total differential,			
		Jacobians.			
		Taylor's series in two	17	TB1	
		or more variables.		(14.9)	
		Maximum, minimum	18-19	TB1	
		and saddle points of		(14.7-14.8)	
		functions of two			
		variables. Several			
		independent variables			
		Lagrange's method of			
		Undetermined			
		Multipliers.			<u> </u>
Module	These lectures introduce the	Beta and Gamma	20	RB1	6
IV	integrals of functions of	functions.		(Ch.15)	
	several variables over a	Double integrals, area,	21-22	TB1	
	region in plane and space.	change of order of		(15.1-15.4)	
					•
	The theory of multiple	integration, evaluation			
	The theory of multiple integrals has wide range of	integration, evaluation of integrals by			
	The theory of multiple	•			

	plane, moments and centers of mass etc.	Evaluation of Triple integrals. Volume and surface area by double and triple integration by transforming in to cylindrical and spherical polar coordinates	23 24-25	TB1 (15.5) TB1 (15.7-15.8)	
Module V	Polar coordinates are especially important in Astronomy and Astronautical engineering	Sketching polar equations of conic section. Equation of chord,	26	TB1 (11.7)	4
	because the satellites, moons, planets all move with	tangent and normal line to a conic section.			
	respect to a point(sun) and approximately move along the ellipses, parabolas, hyperbolas etc. All these curves can be described with a single relatively simple polar equation.	equation of chord of contact, director circle and asymptote to a conic section.	28-29		
Module VI		First order differential equations, linear and Bernoulli's equation, Reduction of order.	30	TB2 (2.3,3.2)	7
	In these lectures, the calculus of vector valued functions are introduced to describe the paths and motions of objects moving in a plane or	Curvature, normal vector, torsion and TNB frame	31	TB1 (13.1,13.3,13.4) & TB2 (9.3)	
	space. The new quantities that describe how an object's path can turn and twist in	Tangential and normal components of velocity and	32	TB1 (13.5-13.6)	
	space are also introduced.	acceleration, radial and transverse acceleration, Motion in polar and cylindrical coordinates		TB2 (9.3)	
		Directional derivative, Gradient, Divergence	33-34	TB1 (14.5)	
		and curl. Expansions, identities. Tangent plane and normal line.		TB2	
		Gradient, divergence	35	(9.5-9.7) RB3	
		and curl in curvilinear coordinates.	33	(Ch.7)	
Module	In these lectures, the theory	Line integrals, Work,	36-38	TB1	4

VII	of integration is extended to	Circulation, Flux,		(16.1-16.3)
	curves and surfaces in a	Path independence,		
	plane or space. The	Potential function,		TB2
	fundamental theorem of	Conservative field,		(9.8-9.9)
	vector integral calculus and	Green's theorem in	39-40	TB1
	its mathematical consequence is discussed	r,		(16.4,16.7
	along with physical	Gauss's Divergence		&16.8)
	applications.	theorem, Stoke's theorem. Applications		TB2
				(9.12,9.14,9.16)

Assessment tools & Evaluation procedure

Assessment Tool	% Contribution during Assessment
Mid Sem. Examination Marks	25
End Sem. Examination Marks	60
Quiz (Best of Two out of Three)	15

NOTICE: All notices related to the course will be displayed in the Department of Mathematics notice board.