Basics of Organic Chemistry (CH 111)

Organic Compounds: Classification, Nomenclature, Hybridization, Electronic Displacements: Inductive, electromeric, resonance and mesomeric effects, hyperconjugation, Dipole moment. Organic acids and bases. Homolytic and Heterolytic fission, arrow rules, Electrophiles and Nucleophiles; Carbocations, Carbanions, Free radicals and Carbenes. Introduction to types of organic reactions and their mechanism: Addition, Elimination and Substitution reactions.

Q.5	Q.1. Apply the IUPAC rules and write the names of the C ₆ H ₁₄ Isomers. Q.2. Which number is correct in the following structure, write the IUPAC name.		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Q. 9	a)	3+5	
Books	Organic Chemistry, 7 th Edition, Morrison, Boyd Organic Chemistry, 7 th Edition; Francis A Carey Fundamentals of Organic Chemistry Solomons, John Wiley Introduction to Organic Chemistry, Streitwiesser, Hathcock and Kosover, Macmillan.		

Dr. A. Sharon,
Department of Chemistry

asharon@bitmesra.ac.in

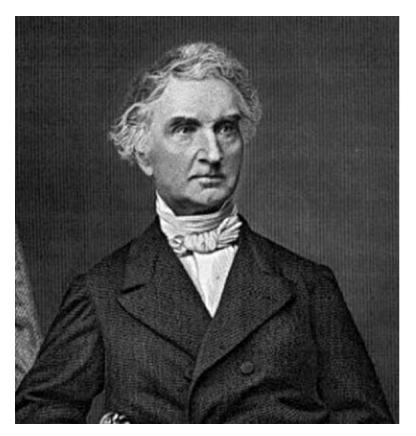
Organic Chemistry Grew with Historical Scientific Thoughts and Postulates

Lavoisier (1743-1794) Law of Conservation of Matter; how chemical compositions could be determined by identifying and measuring the amounts of water, carbon dioxide, and other materials produced when various substances were burned in air. By the time of Lavoisier's studies, two branches of chemistry were becoming recognized. It was **Berzelius** who in 1807 coined the term "organic chemistry" for the study of compounds *derived from natural sources*. The other branch dealt with substances derived from nonliving matter—minerals and the like. It was called *inorganic chemistry*. Combustion analysis: Natural sources contained carbon, and eventually a new definition of organic chemistry emerged: *Organic chemistry is the study of carbon compounds*. This is the definition we still use today.

Lavoisier as portrayed on a 1943 French postage stamp.

A 1979 Swedish stamp honoring Berzelius.

This German stamp depicts a molecular model of urea and was issued in 1982 to commemorate the hundredth anniversary of Wöhler's death. The computer graphic at the top of this page is also a model of urea.

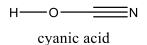

WOHLER DISCOVERY: Inorganic to Organic

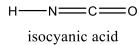
$$NH_4^{+-}OCN \longrightarrow O=C(NH_2)_2$$

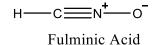
Ammonium cyanate Urea (an inorganic compound) (an organic compound)

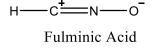
Wöhler brief paper, he published in 1828. Wöhler noted that when he evaporated an aqueous solution of ammonium cyanate, he obtained "colorless, clear crystals often more than an inch long," which were not ammonium cyanate but were instead urea.

FIGHT BETWEEN TWO CHEMIST: DISCOVERY OF ISOMERISM

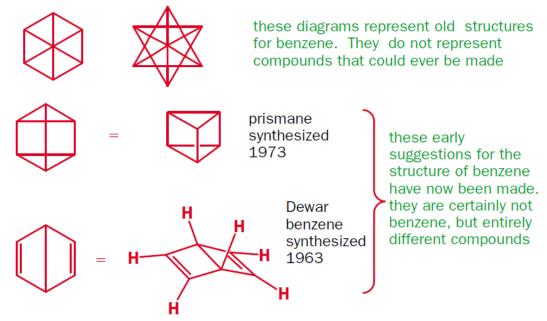





Justus Liebig
-O—N+=C- Ag+


Friedrich Wohler

N O- Ag+



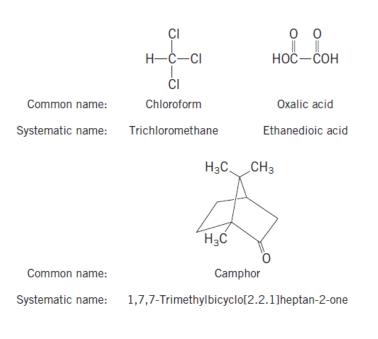
Questions/Interesting Facts

- Benzene has been known since
 - ▶ 1825: when Michael Faraday first isolated and identified benzene from the oily residue. Thus the molecular formula were calculated by chemical analysis and it was C₆H₆.
- What are those strange structure, which were suggested for Benzene

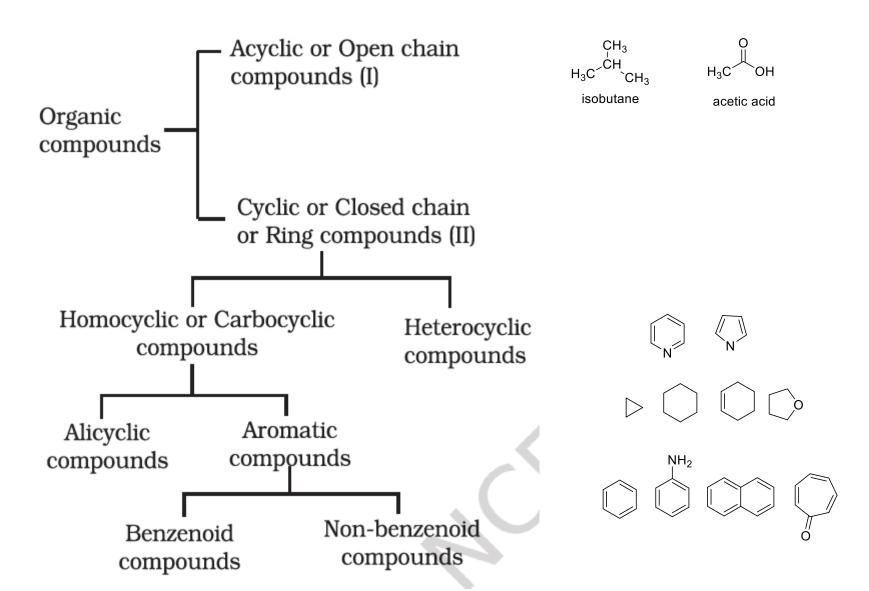
Kekulé proposed the satisfactory structure in 1865

What's in a Name? Organic Nomenclature

Systematic Names and Common Names Systematic names are derived according to a prescribed set of rules, common names are not. Many compounds are better known by common names than by their systematic names.


A single compound can have **several acceptable systematic** names but no two compounds can have the same name.

1892: a group of prominent chemists met in Geneva, Switzerland, where they formulated the principles on which our present system of organic nomenclature is based.


20th Century, *International Union of Pure and Applied Chemistry* (IUPAC) carried out major revisions and extensions of organic nomenclature: IUPAC Rules. 1979 and 1993 versions of these rules were joined in HO-2004.

2004 IUPAC recommendations: "preferred IUPAC name" (PIN)

Generic names in the United States is the U.S. Adopted Names (USAN) Council, a private organization. **International Proprietary Names** (INN) are generic names as designated by the World Health Organization.

Classification

Nomenclature of Organic Compounds

- ➤ IUPAC System: International Standard: Unique and Unambiguous
- ➤ Fundamental Principle: Longest Chain of Carbons Connected by Single Bond.
- ➤ Alkanes and Cycloalkanes: Linear/Acyclic, Rings (Cyclic or alicyclic): The names of alkanes and cycloalkanes are the root names of organic compounds.
- ➤ Substituents and Functional Group: All deviations, either multiple bonds or atoms other than carbon and hydrogen, are indicated by prefixes or suffixes according to a specific set of priorities/rules.

Functional Groups Indicated By Prefix Or Suffix

Family of Compound	<u>Structure</u>	<u>Prefix</u>	<u>Suffix</u>
Carboxylic Acid	O R — C — OH O	carboxy-	-oic acid (-carboxylic acid)
Aldehyde	O R — C — H O	oxo- (formyl)	-al (carbaldehyde)
Ketone	R - C - R	oxo-	-one
Alcohol	R-O-H	hydroxy-	-ol
Amine	R-N	amino-	-amine

Functional Groups Indicated By Suffix Only

Family of Compound	Structure	<u>Prefix</u>	<u>Suffix</u>
Alkene	\c=c		-ene
Alkyne	—c≡c—		-yne

Functional Groups Indicated By Prefix Only

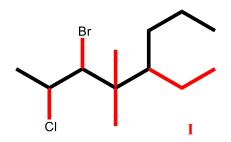
Substituent	<u>Structure</u>	<u>Prefix</u>	<u>Suffix</u>
Alkyl (see list below)	R—	alkyl-	
Alkoxy	R— O —	alkoxy-	
Halogen	F — Cl — Br — I —	fluoro- chloro- bromo- iodo-	
$\begin{array}{ccc} -\text{NO}_2 & -\text{CH} = \text{CH}_2 \\ \text{nitro} & \text{vinyl} \end{array}$	$-CH_2CH = CH_2$ allyl		

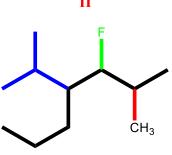
10

Common Alkyl Groups:

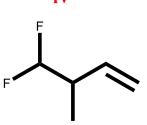
replace "ane" ending of alkane name with "yl". Alternate names for complex substituents are given in brackets

$$-CH_2 - CH$$

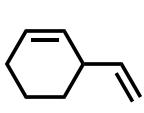

$$CH_3$$


$$CH_3$$

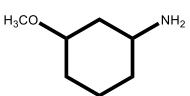
tert-butyl or *t*-butyl [1,1-dimethylethyl]


NOMENCLATURE: PRACTICE

3-bromo-2-chloro-5-ethyl-4,4-dimethyloctane

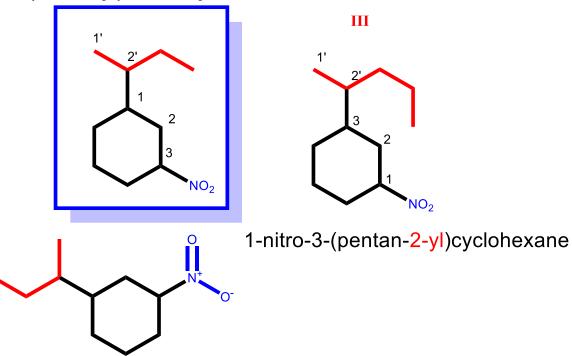


IV



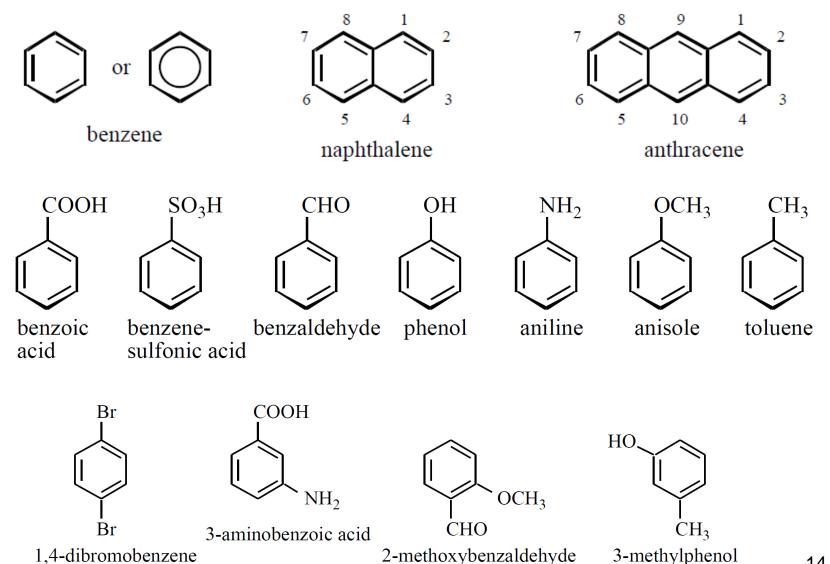
VI

VII

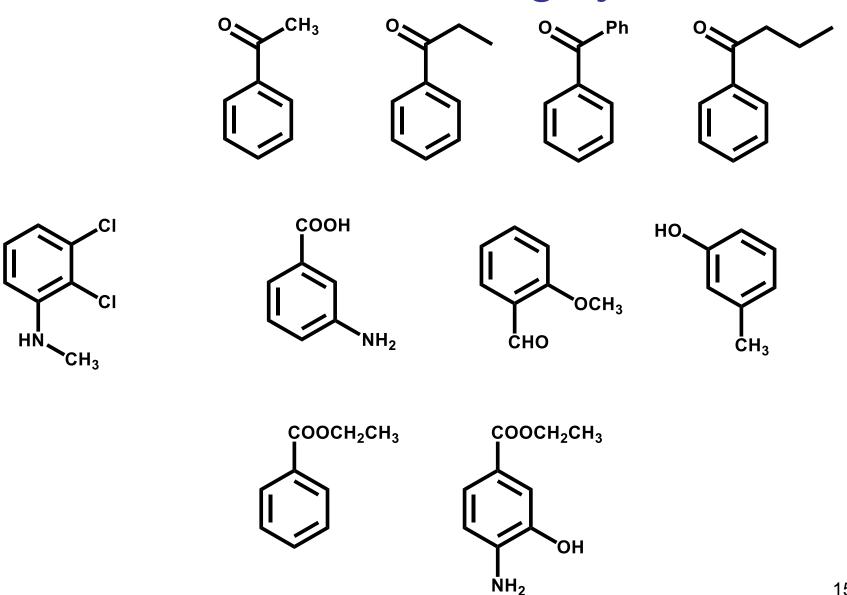

IX

X

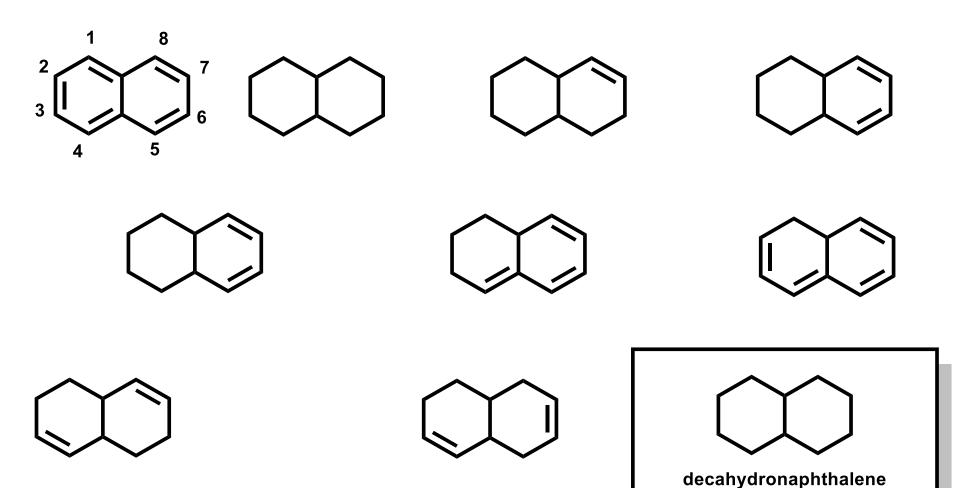
XI


XII

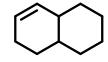
1-(sec-butyl)-3-nitrocyclohexane

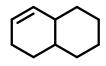


1-NITRO-3-(BUTAN-2-YL)CYCLOHEXANE


Common Parent Ring Systems

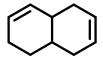
Common Parent Ring Systems


Parent Ring Systems Based Naming

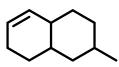


BICYCLO[4,4,0]DECANE

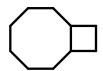
Fused System Nomenclature

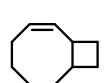


naphthalene


1,2,3,4,4a,5,6,8a-octahydronaphthalene bicyclo[4,4,0]dec-2-ene

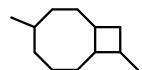
(E)-bicyclo[4,4,0]dec-2-ene


Caution: Stereochemical terms discarded: e


1,2,4a,5,8,8a-hexahydronaphthalene

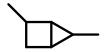
3-methyl-1,2,3,4,4a,5,6,8a-octahydronaphthalene

bicyclo[6.2.0]decane

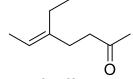


(Z)-bicyclo[6.2.0]dec-2-ene

(E)-bicyclo[6,2,0]dec-2-ene


(2Z,4Z)-bicyclo[6.2.0]deca-2,4,9-triene

4,9-dimethylbicyclo[6.2.0]decane



bicyclo[3.2.0]hept-2-ene

2,5-dimethylbicyclo[2.1.0]pentane

N,N,N-trimethylbutan-2-aminium SEC-BUTYLTRIMETHYLAMMONIUM HYDROXIDE

(E)-5-ethylhept-5-en-2-one

Ques-Ans: Morrison& Boyd: 7th Ed. P:11.

pentan-3-ylcyclobutane 3-cyclobutyl pentane

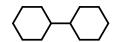
3-ethyl-1,1-dimethylcyclohexane

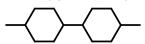
ethylcyclopentane 1-cvclopentylethane

dicyclobutyl methane

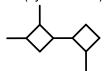
1,2-dicyclobutylethane

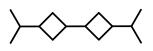
bicyclo[2.2.0]hexane


bicyclo[3.1.0]hexane


bicyclo[2.2.1]heptane

bicyclo[2.2.2]octane


1,1'-bi(cyclohexane)


4,4'-dimethyl-1,1'-bi(cyclohexane)

1,1'-bi(cyclobutane)

2,2',3-trimethyl-1,1'-bi(cyclobutane)

3,3'-diisopropyl-1,1'bi(cyclobutane)

naphthalene

decahydronaphthalene bicyclo[4,4,0]decane

1,2,3,4,4a,5,6,7-octahydronaphthalene

1,2,3,4,5,6,7,8-octahydronaphthalene

1,2,3,4,4a,5-hexahydronaphthalene

1,2-dihydronaphthalene

cyclodecane

1,2,3,4-tetrahydronaphthalene

18

(Z)-cyclodecene (E)-cyclodecene

Nomenclature: Carboxylic Acid

	Structural formula	Systematic name	Common name*
1. 2. 3. 4.	HCO_2H CH_3CO_2H $CH_3(CH_2)_{16}CO_2H$ CH_3CHCO_2H OH	Methanoic acid Ethanoic acid Octadecanoic acid 2-Hydroxypropanoic acid	Formic acid Acetic acid Stearic acid Lactic acid
5.	—CHCO₂H OH	2-Hydroxy-2-phenylethanoic acid	Mandelic acid
6.	H ₂ C=CHCO ₂ H	Propenoic acid	Acrylic acid
7.	$CH_3(CH_2)_7$ $C=C$ $CH_2)_7CO_2H$	(Z)-9-Octadecenoic acid or (Z)-9-Octadec-9-enoic acid	Oleic acid
8.	CO₂H	Benzenecarboxylic acid	Benzoic acid
9.	OH CO ₂ H	o-Hydroxybenzenecarboxylic acid	Salicylic acid
10. 11.	$HO_2CCH_2CO_2H$ $HO_2CCH_2CH_2CO_2H$	Propanedioic acid Butanedioic acid	Malonic acid Succinic acid
12.	CO ₂ H	1,2-Benzenedicarboxylic acid	Phthalic acid

Questions

(a) O O ONA (e) OH

(b) O OH

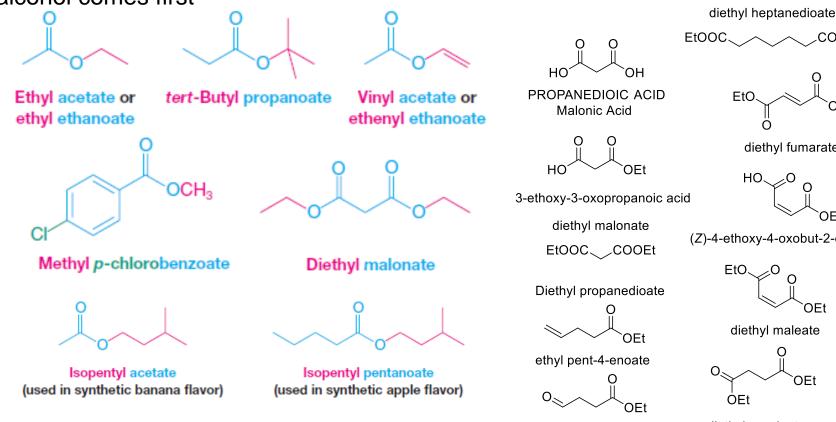
$$C_6H_5$$

ONA

(e) OH

- (a) 2-Methylbutanoic acid
- (b) (Z)-3-Pentenoic acid or (Z)-pent-3-enoic acid
- (c) Sodium 4-bromobutanoate
- (d) 5-Phenylpentanoic acid
- (e) (E)-3-Ethyl-3-pentenoic acid or (E)-3-Ethylpent-3-enoic acid

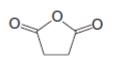
Dicarboxylic Acids

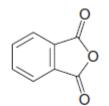

 Dicarboxylic acids are named as alkanedioic acids in the IUPAC systematic or substitutive system. Most simple dicarboxylic acids have common names

ethanedioic acid 1,3-propanedioic acid

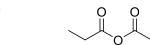
Common			pK _a (at 25 °C)	
Structure	Name	mp (°C)	pK _{a1}	pK _{a2}
HO ₂ C-CO ₂ H	Oxalic acid	189 dec	1.2	4.2
HO ₂ CCH ₂ CO ₂ H	Malonic acid	136	2.9	5.7
HO ₂ C(CH ₂) ₂ CO ₂ H	Succinic acid	187	4.2	5.6
HO ₂ C(CH ₂) ₃ CO ₂ H	Glutaric acid	98	4.3	5.4
HO ₂ C(CH ₂) ₄ CO ₂ H	Adipic acid	153	4.4	5.6
cis-HO ₂ C—CH=CH—CO ₂ H	Maleic acid	131	1.9	6.1
trans-HO ₂ C — CH = CH — CO ₂ H	Fumaric acid	287	3.0	4.4
CO₂H CO₂H	Phthalic acid	206–208 dec	2.9	5.4
CO₂H	Isophthalic acid	345–348	3.5	4.6
ĊO₂H				
CO₂H	Terephthalic	Sublimes	3.5	4.8
	acid			21
CO₂H				'

Esters


The names of esters are derived from the names of the alcohol (with the ending -yl) and the acid (with the ending -ate or -oate). The portion of the name derived from the alcohol comes first

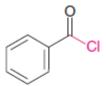

Acid Derivatives

Acetic anhydride (ethanoic anhydride) mp -73 °C

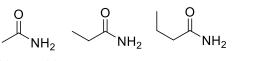

Succinic anhydride mp 121 °C

Phthalic anhydride mp 131 °C

Maleic anhydride mp 53 °C


acetic propionic anhydride

propionic anhydride


Acetyl chloride (ethanoyl chloride) mp -112 °C; bp 51 °C

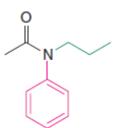
Propanoyl chloride mp -94 °C; bp 80 °C

Benzoyl chloride mp -1 °C; bp 197 °C

Ethanamide acetamide

propionamide butyramide N-propylpropionamide

Acetamide (ethanamide) mp 82 °C; bp 221 °C


N,N-Dimethylacetamide mp -20 °C; bp 166 °C

N-Ethylacetamide bp 205 °C

Ethanenitrile (acetonitrile)

$$\overset{3}{C}H_2 = \overset{2}{C}H - \overset{1}{C} = N$$
:

Propenenitrile (acrylonitrile)

N-Phenyl-N-propylacetamide mp 49 °C; bp 266 °C at 712 torr

$$\bigcap_{\mathsf{NH_2}}^{\mathsf{O}}$$

Benzamide mp 130 °C; bp 290 °C

Questions

Write structural formulas for the following:

- (a) Methyl propanoate
- (b) Ethyl p-nitrobenzoate
- (c) Dimethyl malonate
- (d) N,N-Dimethylbenzamide
- (e) Pentanenitrile

- (f) Dimethyl phthalate
- (g) Dipropyl maleate
- (h) N,N-Dimethylformamide
- (i) 2-Bromopropanoyl bromide
- (j) Diethyl succinate

N,*N*-Diethyl-3-methylbenzamide:

(also called N, N-diethyl-m-toluamide, or DEET): Insect Repellant

Answers